Publication Search Form

Keywords

Authors

Year

We found publication with these paramters.

Sequence-based Structured Prediction for Semantic Parsing

Chunyang Xiao, Marc Dymetman, Claire Gardent
We propose an approach for semantic parsing that uses a recurrent neural network to map a natural language question into a logical form representation of a KB query. Building on recent work by (Wang et al., 2015), the interpretable logical forms, which are structured objects obeying certain constraints, are enumerated by an underlying grammar and are paired with their canonical realizations. In order to use sequence prediction, we need to sequentialize these logical forms. We compare three sequentializations: a direct linearization of the logical form, a linearization of the associated canonical realization, and a sequence consisting of derivation steps relative to the underlying grammar. We also show how grammatical constraints on the derivation sequence can easily be integrated inside the RNNbased sequential predictor. Our experiments show important improvements over previous results for the same dataset, and also demonstrate the advantage of incorporating the grammatical constraints.
ACL, Berlin, Germany, August 7-12, 2016
2016
2016/034